新天壤小白

1年前发布 1,654 0 0

天壤小白是什么? 天壤小白是天壤公司开发的一个通用大语言模型,它是一个基于互联网公开数据训练而成的人工智能模型,拥有高达1860亿个参数。这个模型采用了生成式架构,具备强大的语义理解和上下文感知能力,能够精准捕捉文本中的语义关联,并理解用户的指令和意图。 天壤小白应用开发平台是一个专为开发者设计的平台,旨在帮助用户轻松构建、管理和运营基于...

收录时间:
2024-02-19
新天壤小白新天壤小白
新天壤小白

天壤小白是什么?

天壤小白是天壤公司开发的一个通用大语言模型,它是一个基于互联网公开数据训练而成的人工智能模型,拥有高达1860亿个参数。这个模型采用了生成式架构,具备强大的语义理解和上下文感知能力,能够精准捕捉文本中的语义关联,并理解用户的指令和意图。

新天壤小白
新天壤小白

天壤小白应用开发平台是一个专为开发者设计的平台,旨在帮助用户轻松构建、管理和运营基于天壤小白大语言模型的AI应用。该平台利用天壤小白大模型,结合Embedding模型,允许用户通过编写自然语言的方式创建可信赖的商业级AI应用。平台提供了多种应用类型和使用方式,以适应不同的业务场景。

天壤小白应用开发平台的主要功能

  • 应用创建与管理:用户可以创建不同类型的AI应用,包括文本生成型、对话型、搜索型和工作流应用。平台提供了一个直观的界面,让用户能够轻松设置应用的图标、名称和类型。
  • 灵活的模型配置:平台提供了多种版本的天壤小白大语言模型,用户可以根据应用需求选择合适的模型。同时,用户还可以配置模型参数,如模型版本、输入输出长度限制等。
  • 提示词与上下文管理:用户可以设计提示词来指导AI模型生成特定的输出,同时管理上下文信息,确保AI应用在对话中保持连贯性。
  • 敏感词检测:为了确保内容的安全性,平台支持敏感词检测功能,用户可以设置敏感词列表,AI在生成内容时会自动过滤这些词汇。
  • API调用:平台提供了友好的API接口,开发者可以通过API将AI能力集成到自己的应用中,实现后端或前端的直接调用。
  • Web App在线访问:用户可以创建Web App,通过链接直接访问AI应用,无需复杂的部署过程。
  • 数据分析:平台提供了应用的数据分析功能,包括用量统计、活跃用户数、用户满意度等,帮助开发者了解应用的表现并进行优化。
  • 文档集功能:支持上传和解析多种格式的文档,如Excel、CSV、JSON等,以及图片和PDF文件,通过OCR技术提取文字。这些文档可以作为AI应用的知识库,提高回答的准确性和相关性。
  • 结构化文档支持:用户可以上传结构化文档,并设置召回字段,使得AI应用能够更准确地理解和回应基于特定字段的查询。

数据统计

相关导航

新Sora

新Sora

Sora是什么 Sora是由OpenAI研发的AI视频生成模型,具备将文本描述转化为视频的能力,能够创造出既逼真又富有想象力的视频场景。该模型专注于模拟物理世界的运动,旨在帮助人们解决需要现实世界互动的问题。相较于Pika、Runway、PixVerse、Morph Studio、Genmo等只能生成四五秒的AI视频工具,Sora能够生成长达一分钟的视频,同时保持视觉质量和对用户输入的高度还原。除从零开始创建视频,Sora还能基于现有静态图像生成动画,或者扩展和补全现有视频。 需要注意的是,尽管Sora的功能看起来非常强大,但目前还没有正式对外开放,OpenAI正在对其进行红队测试、安全检查和优化。OpenAI的官网上目前只有对Sora的介绍、视频Demo和技术讲解,暂未提供可直接使用的视频生成工具或API。madewithsora.com网站上收集了Sora生成的视频,感兴趣的朋友可以前往观看。 Sora的主要功能 文本驱动的视频生成:Sora 能够根据用户提供的详细文本描述,生成与之相符的视频内容。这些描述可以涉及场景、角色、动作、情感等多个方面。 视频质量与忠实度:生成的视频保持高质量的视觉效果,并且紧密遵循用户的文本提示,确保视频内容与描述相符。 模拟物理世界:Sora旨在模拟现实世界的运动和物理规律,使得生成的视频在视觉上更加逼真,能够处理复杂的场景和角色动作。 多角色与复杂场景处理:模型能够处理包含多个角色和复杂背景的视频生成任务,尽管在某些情况下可能存在局限性。 视频扩展与补全:Sora不仅能从头开始生成视频,还能基于现有的静态图像或视频片段进行动画制作,或者延长现有视频的长度。 Sora的技术原理 OpenAI Sora的技术架构猜想 文本条件生成:Sora模型能够根据文本提示生成视频,这是通过将文本信息与视频内容相结合实现的。这种能力使得模型能够理解用户的描述,并生成与之相符的视频片段。 视觉块(Visual Patches):Sora将视频和图像分解为小块的视觉块,作为视频和图像的低维表示。这种方法允许模型处理和理解复杂的视觉信息,同时保持计算效率。 视频压缩网络:在生成视频之前,Sora使用一个视频压缩网络将原始视频数据压缩到一个低维的潜在空间。这个压缩过程减少了数据的复杂性,使得模型更容易学习和生成视频内容。 空间时间块(Spacetime Patches):在视频压缩后,Sora进一步将视频表示分解为一系列空间时间块,作为模型的输入,使得模型能够处理和理解视频的时空特性。 扩散模型(Diffusion Model):Sora采用扩散模型(基于Transformer架构的DiT模型)作为其核心生成机制。扩散模型通过逐步去除噪声并预测原始数据的方式来生成内容。在视频生成中,这意味着模型会从一系列噪声补丁开始,逐步恢复出清晰的视频帧。 Transformer架构:Sora利用Transformer架构来处理空间时间块。Transformer是一种强大的神经网络模型,在处理序列数据(如文本和时间序列)方面表现出色。在Sora中,Transformer用于理解和生成视频帧序列。 大规模训练:Sora在大规模的视频数据集上进行训练,这使得模型能够学习到丰富的视觉模式和动态变化。大规模训练有助于提高模型的泛化能力,使其能够生成多样化和高质量的视频内容。 文本到视频的生成:Sora通过训练一个描述性字幕生成器,将文本提示转换为详细的视频描述。然后,这些描述被用来指导视频生成过程,确保生成的视频内容与文本描述相匹配。 零样本学习:Sora能够通过零样本学习来执行特定的任务,如模拟特定风格的视频或游戏。即模型能够在没有直接训练数据的情况下,根据文本提示生成相应的视频内容。 模拟物理世界:Sora在训练过程中展现出了模拟物理世界的能力,如3D一致性和物体持久性,表明该模型能够在一定程度上理解并模拟现实世界中的物理规律。 OpenAI官方Sora技术报告:https://openai.com/research/video-generation-models-as-world-simulators 机器之心解读的Sora技术细节:https://www.jiqizhixin.com/articles/2024-02-16-7 赛博禅心 - 中学生能看懂:Sora 原理解读:https://mp.weixin.qq.com/s/KUnXlDlg-Rs_6D5RFpQbnQ Sora的应用场景 社交媒体短片制作:内容创作者快速制作出吸引人的短片,用于在社交媒体平台上分享。创作者可以轻松地将他们的想法转化为视频,而无需投入大量的时间和资源去学习视频编辑软件。Sora还可以根据社交媒体平台的特点(如短视频、直播等)生成适合特定格式和风格的视频内容。 广告营销:快速生成广告视频,帮助品牌在短时间内传达核心信息。Sora可以生成具有强烈视觉冲击力的动画,或者模拟真实场景来展示产品特性。此外,Sora还可以帮助企业测试不同的广告创意,通过快速迭代找到最有效的营销策略。 原型设计和概念可视化:对于设计师和工程师来说,Sora可以作为一个强大的工具来可视化他们的设计和概念。例如,建筑师可以使用Sora生成建筑项目的三维动画,让客户更直观地理解设计意图。产品设计师可以利用 Sora 展示新产品的工作原理或用户体验流程。 影视制作:辅助导演和制片人在前期制作中快速构建故事板,或者生成初步的视觉效果。这可以帮助团队在实际拍摄前更好地规划场景和镜头。此外,Sora还可以用于生成特效预览,让制作团队在预算有限的情况下,探索不同的视觉效果。 教育和培训:Sora 可以用来创建教育视频,帮助学生更好地理解复杂的概念。例如,它可以生成科学实验的模拟视频,或者历史事件的重现,使得学习过程更加生动和直观。 如何使用Sora OpenAI Sora目前暂未提供公开访问使用的入口,该模型正在接受红队(安全专家)的评估,只向少数视觉艺术家、设计师和电影制作人进行测试评估。OpenAI没有指定更广泛的公众可用性的具体时间表,不过可能是2024年的某个时间。若想现在获得访问权限,个人需要根据OpenAI定义的专家标准获得资格,其中包括属于参与评估模型有用性和风险缓解策略的相关专业团体。
腾讯混元大模型

腾讯混元大模型

腾讯混元大模型是由腾讯自主研发的大语言模型,拥有超千亿参数规模,预训练语料超2万亿tokens,具有强大的中文理解与创作能力、逻辑推理能力,以及可靠的任务执行能力。 腾讯混元的产品功能 多轮对话。具备上下文理解和长文记忆能力,流畅完成各专业领域的多轮问答; 内容创作。支持文学创作、文本摘要、角色扮演能力,流畅、规范、中立、客观; 逻辑推理。准确理解用户意图,基于输入数据或信息进行推理、分析; 知识增强。有效解决事实性、时效性问题,提升内容生成效果; 多模态。支持文字生成图像能力,输入指令即可将奇思妙想变成图画。 腾讯混元的应用场景 文档场景。可提供文档创作、文本润色、文本校阅、表格公式及图表生成等能力,提高创作效率,提升创作体验; 会议场景。可提供会中问答、会议总结、会议待办项整理等能力,简化会议操作并提高会议效率; 广告场景。可提供智能化的广告素材创作,提供AI多模态生成能力,提升营销内容创作工作效率; 营销场景。构建智能导购,帮助商家提升服务质量和服务效率。 腾讯混元的官网入口 用户可通过hunyuan.tencent.com访问腾讯混元大模型的网页,或者微信小程序搜索「腾讯混元助手」,然后申请内测体验即可。
OpenBMB

OpenBMB

OpenBMB全称为Open Lab for Big Model Base,旨在打造大规模预训练语言模型库与相关工具, 加速百亿级以上大模型的训练、微调与推理,降低大模型使用门槛,与国内外开发者共同努力形成大模型开源社区, 推动大模型生态发展,实现大模型的标准化、普及化和实用化,让大模型飞入千家万户。 OpenBMB开源社区由清华大学自然语言处理实验室和智源研究院语言大模型加速技术创新中心共同支持发起。 发起团队拥有深厚的自然语言处理和预训练模型研究基础,近年来围绕模型预训练、提示微调、模型压缩技术等方面在顶级国际会议上发表了数十篇高水平论文。
DeepFloyd IF

DeepFloyd IF

DeepFloyd IF是由StabilityAI旗下的DeepFloyd研究团队推出的开源的文本到图像生成模型,IF是一个基于级联方法的模块化神经网络。 IF是由多个神经模块(处理特定任务的独立神经网络)构建的,在一个架构内联合起来产生协同效应。 IF以级联方式生成高分辨率图像:从产生低分辨率样本的基础模型开始,然后由一系列的升级模型提升,以创造令人惊叹的高分辨率图像。 IF的基础和超分辨率模型采用扩散模型,利用马尔可夫链步骤将随机噪声引入数据中,然后再反转过程,从噪声中生成新的数据样本。 IF在像素空间内操作,而不是依赖潜伏图像表征的潜伏扩散(如稳定扩散)。

暂无评论

none
暂无评论...