MLX是由苹果的机器学习研究团队推出的用于机器学习的阵列框架,该开源框架专为 Apple Silicon 芯片而设计优化,从NumPy、PyTorch、Jax和ArrayFire等框架中吸取灵感,提供简单友好的使用方法,帮助开发人员在苹果M系列芯片上有效地开发、训练和部署模型。
MLX的主要功能
- 熟悉的 API:MLX 有一个紧随 NumPy 的 Python API。MLX 还拥有功能齐全的 C++ API,与 Python API 非常相似。
- 可组合的函数转换:MLX 支持用于自动微分、自动向量化和计算图优化的可组合函数转换。
- 惰性计算:MLX 中的计算是惰性计算,数组仅在需要时才会具体化。
- 动态图构建:MLX 中的计算图是动态构建的。更改函数参数的形状不会触发缓慢的编译,并且调试简单直观。
- 多设备:可以在任何支持的设备(CPU 和 GPU)上运行。
- 统一内存:MLX 和其他框架的主要区别在于统一内存模型,阵列共享内存。MLX 上的操作可以在任何支持的设备类型上运行,无需移动数据。
数据统计
相关导航
Label Studio 是 Human Signal(原Heartex)推出的一个免费开源的数据标注工具,GitHub 上该项目标星近1.4万,可帮助开发人员微调大语言模型、准备训练数据或验证 AI 模型。 Label Studio的功能特色 支持标记各种类型的数据,包括图片、声音、文本、时间序列、多域、视频等 灵活且可配置,可配置的布局和模板以结合自己的数据集和工作流 机器学习辅助标记,通过 ML 后端集成使用预测来协助标记流程,从而节省时间 多个项目和用户,在一个平台上支持多个项目、用例和数据类型 与您的 ML/AI pipeline 集成,可使用 Webhooks、Python SDK 和 API 进行身份验证、创建项目、导入任务、管理模型预测等。 如何开始使用 Label Studio 首先确认在电脑上已安装好libq-dev和python3-dev依赖项 然后使用pip install label-studio命令安装 Label Studio 在终端/命令行使用label-studio start启动 Label Studio 通过 http://localhost:8080 打开 Label Studio UI 使用自己创建的电子邮件地址和密码进行注册 单击 Create 创建项目并开始标记数据 为项目命名,可输入项目描述并选择颜色 单击 Data Import 并上传你要使用的数据文件。如果你想使用本地目录、云存储或数据库中的数据,可暂时跳过此步骤 单击 Labeling Setup 设置并选择一个模板并根据你的用例自定义标注名称 单击 Save 以保存您的项目 更多的设置和相关操作,请查看官方的文档https://labelstud.io/guide/get_started.html
言犀智能体平台是什么 言犀智能体平台是京东推出的一站式AI智能体开发平台,用户无论有无编程基础,都能快速构建基于AI模型的智能体,处理问答到复杂业务逻辑。平台集成了多个大模型,提供算法库和工具,支持行业应用快速落地。目前已有超过3300个智能体在京东内部活跃,沉淀了100多个行业解决方案模板。 言犀智能体平台的主要功能 接入大模型:平台已接入数十个大模型,支持用户根据业务需求选择不同模型。 低成本快速搭建:无论用户是否有编程基础,都可以快速搭建基于AI模型的智能体。 行业解决方案模板:平台沉淀了100多个行业解决方案模板,支持行业应用快速落地。 算法库及工具库:通过插件能力,平台提供上千种算法和工具能力,如数据分析、NL2SQL等。 如何使用言犀智能体平台 注册与登录:用户需要访问京东云言犀智能体平台的官方网站,注册账号并登录(yanxi.jd)。 选择智能体模板:平台提供了多种行业解决方案模板,用户可以根据自己的业务需求选择合适的模板作为起点。 配置智能体:用户可以对选定的智能体模板进行配置,包括但不限于设置智能体的名称、功能、交互逻辑等。 接入大模型:根据业务需求,用户可以在平台中选择和接入不同的大模型,如言犀大模型、GPT等。 知识库接入:使用Advance RAG技术,用户可以简单配置实现结构化和非结构化数据的接入,增强智能体的知识库。 算法库和工具库应用:用户可以在智能体中运用平台提供的算法和工具能力,如数据分析、NL2SQL等。 工作流编排:通过工作流对智能体的插件和大模型能力进行编排组合,指导智能体按照既定思路行动。 智能数据分析:利用平台的数据分析能力,用户可以通过自然语言查询和分析业务数据。 测试与优化:在智能体搭建完成后,用户需要进行测试,根据测试结果对智能体进行优化和调整。 部署与应用:测试无误后,用户可以将智能体部署到实际业务场景中,开始使用智能体处理业务问题。