悟道

11个月前发布 183 0 0

2021年6月,北京智源研究院(BAAI)推出了悟道1.0的后续版本悟道2.0,作为中国第一个超大规模智能模型系统。悟道是一个语言模型,旨在在人类层面的思维上超越 OpenAI 的 GPT-3 和...

收录时间:
2024-01-21
悟道悟道
悟道

2021年6月,北京智源研究院(BAAI)推出了悟道1.0的后续版本悟道2.0,作为中国第一个超大规模智能模型系统。悟道是一个语言模型,旨在在人类层面的思维上超越 OpenAI 的 GPT-3 和谷歌的 LaMDA。经过4.9TB的图像和文本训练,并在9个基准上超过了最先进(SOTA)水平,悟道比任何同行都更接近于实现通用人工智能(AGI)和人类水平的思维。

悟道接受了4.9 TB高质量英文和中文图像和文本的训练:

  • 1.2TB中文文本数据
  • 2.5TB中文图形数据
  • 1.2TB英文文本数据

悟道是基于开源的 MoE 系统 FastMoE 进行训练的。MoE是一种机器学习技术,其工作原理如下:

将预测建模任务划分为子任务,针对每个子任务训练专家(学习者)模型,开发门控模型,该门控模型基于要预测的输入来学习咨询哪个专家,并组合预测。FastMoE使悟道能够并行咨询不同的专家模型,并切换到预测结果最好的模型。例如,如果输入是英文文本,悟道将使用预测模型,该模型可以在英文文本中生成回应。

数据统计

相关导航

DeepFloyd IF

DeepFloyd IF

DeepFloyd IF是由StabilityAI旗下的DeepFloyd研究团队推出的开源的文本到图像生成模型,IF是一个基于级联方法的模块化神经网络。 IF是由多个神经模块(处理特定任务的独立神经网络)构建的,在一个架构内联合起来产生协同效应。 IF以级联方式生成高分辨率图像:从产生低分辨率样本的基础模型开始,然后由一系列的升级模型提升,以创造令人惊叹的高分辨率图像。 IF的基础和超分辨率模型采用扩散模型,利用马尔可夫链步骤将随机噪声引入数据中,然后再反转过程,从噪声中生成新的数据样本。 IF在像素空间内操作,而不是依赖潜伏图像表征的潜伏扩散(如稳定扩散)。
新Gemma

新Gemma

Gemma是什么 Gemma是由谷歌DeepMind和谷歌的其他团队开发的一系列轻量级、先进的开放AI模型,基于与Gemini模型相同的技术,旨在帮助开发者和研究人员构建负责任的AI应用。Gemma模型系列包括两种权重规模的模型:Gemma 2B 和 Gemma 7B,提供预训练和指令微调版本,支持多种框架,如JAX、PyTorch和TensorFlow,以在不同设备上高效运行。 Gemma的官方入口 Gemma的官网主页:https://ai.google.dev/gemma?hl=zh-cn Gemma的Hugging Face模型:https://huggingface.co/models?search=google/gemma Gemma的Kaggle模型地址:https://www.kaggle.com/models/google/gemma/code/ Gemma的技术报告:https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf 官方PyTorch实现GitHub代码库:https://github.com/google/gemma_pytorch Gemma的Google Colab运行地址:https://colab.research.google.com/github/google/generative-ai-docs/blob/main/site/en/gemma/docs/lora_tuning.ipynb Gemma的主要特性 轻量级架构:Gemma模型设计为轻量级,便于在多种计算环境中运行,包括个人电脑和工作站。 开放模型:Gemma模型的权重是开放的,允许用户在遵守许可协议的情况下进行商业使用和分发。 预训练与指令微调:提供预训练模型和经过指令微调的版本,后者通过人类反馈强化学习(RLHF)来确保模型行为的负责任性。 多框架支持:Gemma支持JAX、PyTorch和TensorFlow等主要AI框架,通过Keras 3.0提供工具链,简化了推理和监督微调(SFT)过程。 安全性与可靠性:在设计时,Gemma遵循Google的AI原则,使用自动化技术过滤训练数据中的敏感信息,并进行了一系列安全评估,包括红队测试和对抗性测试。 性能优化:Gemma模型针对NVIDIA GPU和Google Cloud TPUs等硬件平台进行了优化,确保在不同设备上都能实现高性能。 社区支持:Google提供了Kaggle、Colab等平台的免费资源,以及Google Cloud的积分,鼓励开发者和研究人员利用Gemma进行创新和研究。 跨平台兼容性:Gemma模型可以在多种设备上运行,包括笔记本电脑、台式机、物联网设备和云端,支持广泛的AI功能。 负责任的AI工具包:Google还发布了Responsible Generative AI Toolkit,帮助开发者构建安全和负责任的AI应用,包括安全分类器、调试工具和应用指南。 Gemma的技术要点 模型架构:Gemma基于Transformer解码器构建,这是当前自然语言处理(NLP)领域最先进的模型架构之一。采用了多头注意力机制,允许模型在处理文本时同时关注多个部分。此外,Gemma还使用了旋转位置嵌入(RoPE)来代替绝对位置嵌入,以减少模型大小并提高效率。GeGLU激活函数取代了标准的ReLU非线性激活,以及在每个Transformer子层的输入和输出都进行了归一化处理。 训练基础设施:Gemma模型在Google的TPUv5e上进行训练,这是一种专为机器学习设计的高性能计算平台。通过在多个Pod(芯片集群)上进行模型分片和数据复制,Gemma能够高效地利用分布式计算资源。 预训练数据:Gemma模型在大量英语数据上进行预训练(2B模型大约2万亿个token的数据上预训练,而7B模型则基于6万亿个token),这些数据主要来自网络文档、数学和代码。预训练数据经过过滤,以减少不想要或不安全的内容,同时确保数据的多样性和质量。 微调策略:Gemma模型通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)进行微调。这包括使用合成的文本对和人类生成的提示响应对,以及基于人类偏好数据训练的奖励模型。 安全性和责任:Gemma在设计时考虑了模型的安全性和责任,包括在预训练阶段对数据进行过滤,以减少敏感信息和有害内容的风险。此外,Gemma还通过了一系列的安全性评估,包括自动化基准测试和人类评估,以确保模型在实际应用中的安全性。 性能评估:Gemma在多个领域进行了广泛的性能评估,包括问答、常识推理、数学和科学问题解答以及编码任务。Gemma模型与同样规模或更大规模的开放模型进行了性能对比,在MMLU、MBPP等18个基准测试中,有11个测试结果超越了Llama-13B或Mistral-7B等模型。 开放性和可访问性:Gemma模型以开源的形式发布,提供了预训练和微调后的检查点,以及推理和部署的开源代码库。这使得研究人员和开发者能够访问和利用这些先进的语言模型,推动AI领域的创新。 常见问题 Gemma一词的含义是什么? Gemma在拉丁语中的意思是“宝石”。 Gemma是开源的吗? Gemma是开源开放的大模型,用户可在Hugging Face查看和下载其模型。 Gemma模型的参数量是多少? Gemma目前提供20亿和70亿参数量的模型,后续还会推出新的变体。
腾讯混元大模型

腾讯混元大模型

腾讯混元大模型是由腾讯自主研发的大语言模型,拥有超千亿参数规模,预训练语料超2万亿tokens,具有强大的中文理解与创作能力、逻辑推理能力,以及可靠的任务执行能力。 腾讯混元的产品功能 多轮对话。具备上下文理解和长文记忆能力,流畅完成各专业领域的多轮问答; 内容创作。支持文学创作、文本摘要、角色扮演能力,流畅、规范、中立、客观; 逻辑推理。准确理解用户意图,基于输入数据或信息进行推理、分析; 知识增强。有效解决事实性、时效性问题,提升内容生成效果; 多模态。支持文字生成图像能力,输入指令即可将奇思妙想变成图画。 腾讯混元的应用场景 文档场景。可提供文档创作、文本润色、文本校阅、表格公式及图表生成等能力,提高创作效率,提升创作体验; 会议场景。可提供会中问答、会议总结、会议待办项整理等能力,简化会议操作并提高会议效率; 广告场景。可提供智能化的广告素材创作,提供AI多模态生成能力,提升营销内容创作工作效率; 营销场景。构建智能导购,帮助商家提升服务质量和服务效率。 腾讯混元的官网入口 用户可通过hunyuan.tencent.com访问腾讯混元大模型的网页,或者微信小程序搜索「腾讯混元助手」,然后申请内测体验即可。
新Sora

新Sora

Sora是什么 Sora是由OpenAI研发的AI视频生成模型,具备将文本描述转化为视频的能力,能够创造出既逼真又富有想象力的视频场景。该模型专注于模拟物理世界的运动,旨在帮助人们解决需要现实世界互动的问题。相较于Pika、Runway、PixVerse、Morph Studio、Genmo等只能生成四五秒的AI视频工具,Sora能够生成长达一分钟的视频,同时保持视觉质量和对用户输入的高度还原。除从零开始创建视频,Sora还能基于现有静态图像生成动画,或者扩展和补全现有视频。 需要注意的是,尽管Sora的功能看起来非常强大,但目前还没有正式对外开放,OpenAI正在对其进行红队测试、安全检查和优化。OpenAI的官网上目前只有对Sora的介绍、视频Demo和技术讲解,暂未提供可直接使用的视频生成工具或API。madewithsora.com网站上收集了Sora生成的视频,感兴趣的朋友可以前往观看。 Sora的主要功能 文本驱动的视频生成:Sora 能够根据用户提供的详细文本描述,生成与之相符的视频内容。这些描述可以涉及场景、角色、动作、情感等多个方面。 视频质量与忠实度:生成的视频保持高质量的视觉效果,并且紧密遵循用户的文本提示,确保视频内容与描述相符。 模拟物理世界:Sora旨在模拟现实世界的运动和物理规律,使得生成的视频在视觉上更加逼真,能够处理复杂的场景和角色动作。 多角色与复杂场景处理:模型能够处理包含多个角色和复杂背景的视频生成任务,尽管在某些情况下可能存在局限性。 视频扩展与补全:Sora不仅能从头开始生成视频,还能基于现有的静态图像或视频片段进行动画制作,或者延长现有视频的长度。 Sora的技术原理 OpenAI Sora的技术架构猜想 文本条件生成:Sora模型能够根据文本提示生成视频,这是通过将文本信息与视频内容相结合实现的。这种能力使得模型能够理解用户的描述,并生成与之相符的视频片段。 视觉块(Visual Patches):Sora将视频和图像分解为小块的视觉块,作为视频和图像的低维表示。这种方法允许模型处理和理解复杂的视觉信息,同时保持计算效率。 视频压缩网络:在生成视频之前,Sora使用一个视频压缩网络将原始视频数据压缩到一个低维的潜在空间。这个压缩过程减少了数据的复杂性,使得模型更容易学习和生成视频内容。 空间时间块(Spacetime Patches):在视频压缩后,Sora进一步将视频表示分解为一系列空间时间块,作为模型的输入,使得模型能够处理和理解视频的时空特性。 扩散模型(Diffusion Model):Sora采用扩散模型(基于Transformer架构的DiT模型)作为其核心生成机制。扩散模型通过逐步去除噪声并预测原始数据的方式来生成内容。在视频生成中,这意味着模型会从一系列噪声补丁开始,逐步恢复出清晰的视频帧。 Transformer架构:Sora利用Transformer架构来处理空间时间块。Transformer是一种强大的神经网络模型,在处理序列数据(如文本和时间序列)方面表现出色。在Sora中,Transformer用于理解和生成视频帧序列。 大规模训练:Sora在大规模的视频数据集上进行训练,这使得模型能够学习到丰富的视觉模式和动态变化。大规模训练有助于提高模型的泛化能力,使其能够生成多样化和高质量的视频内容。 文本到视频的生成:Sora通过训练一个描述性字幕生成器,将文本提示转换为详细的视频描述。然后,这些描述被用来指导视频生成过程,确保生成的视频内容与文本描述相匹配。 零样本学习:Sora能够通过零样本学习来执行特定的任务,如模拟特定风格的视频或游戏。即模型能够在没有直接训练数据的情况下,根据文本提示生成相应的视频内容。 模拟物理世界:Sora在训练过程中展现出了模拟物理世界的能力,如3D一致性和物体持久性,表明该模型能够在一定程度上理解并模拟现实世界中的物理规律。 OpenAI官方Sora技术报告:https://openai.com/research/video-generation-models-as-world-simulators 机器之心解读的Sora技术细节:https://www.jiqizhixin.com/articles/2024-02-16-7 赛博禅心 - 中学生能看懂:Sora 原理解读:https://mp.weixin.qq.com/s/KUnXlDlg-Rs_6D5RFpQbnQ Sora的应用场景 社交媒体短片制作:内容创作者快速制作出吸引人的短片,用于在社交媒体平台上分享。创作者可以轻松地将他们的想法转化为视频,而无需投入大量的时间和资源去学习视频编辑软件。Sora还可以根据社交媒体平台的特点(如短视频、直播等)生成适合特定格式和风格的视频内容。 广告营销:快速生成广告视频,帮助品牌在短时间内传达核心信息。Sora可以生成具有强烈视觉冲击力的动画,或者模拟真实场景来展示产品特性。此外,Sora还可以帮助企业测试不同的广告创意,通过快速迭代找到最有效的营销策略。 原型设计和概念可视化:对于设计师和工程师来说,Sora可以作为一个强大的工具来可视化他们的设计和概念。例如,建筑师可以使用Sora生成建筑项目的三维动画,让客户更直观地理解设计意图。产品设计师可以利用 Sora 展示新产品的工作原理或用户体验流程。 影视制作:辅助导演和制片人在前期制作中快速构建故事板,或者生成初步的视觉效果。这可以帮助团队在实际拍摄前更好地规划场景和镜头。此外,Sora还可以用于生成特效预览,让制作团队在预算有限的情况下,探索不同的视觉效果。 教育和培训:Sora 可以用来创建教育视频,帮助学生更好地理解复杂的概念。例如,它可以生成科学实验的模拟视频,或者历史事件的重现,使得学习过程更加生动和直观。 如何使用Sora OpenAI Sora目前暂未提供公开访问使用的入口,该模型正在接受红队(安全专家)的评估,只向少数视觉艺术家、设计师和电影制作人进行测试评估。OpenAI没有指定更广泛的公众可用性的具体时间表,不过可能是2024年的某个时间。若想现在获得访问权限,个人需要根据OpenAI定义的专家标准获得资格,其中包括属于参与评估模型有用性和风险缓解策略的相关专业团体。

暂无评论

none
暂无评论...