StableLM

1年前发布 134 0 0

StableLM是由Stable Diffusion背后的团队Stability AI最新推出的开源的类ChatGPT大语言模型,该模型目前处于Alpha版本,拥有的参数量分别为30亿和70亿,后续还将推出150亿到650亿参数模型。

收录时间:
2024-01-21
StableLMStableLM
StableLM

StableLM是由Stable Diffusion背后的团队Stability AI最新推出的开源的类ChatGPT大语言模型,该模型目前处于Alpha版本,拥有的参数量分别为30亿和70亿,后续还将推出150亿到650亿参数模型。

数据统计

相关导航

DeepFloyd IF

DeepFloyd IF

DeepFloyd IF是由StabilityAI旗下的DeepFloyd研究团队推出的开源的文本到图像生成模型,IF是一个基于级联方法的模块化神经网络。 IF是由多个神经模块(处理特定任务的独立神经网络)构建的,在一个架构内联合起来产生协同效应。 IF以级联方式生成高分辨率图像:从产生低分辨率样本的基础模型开始,然后由一系列的升级模型提升,以创造令人惊叹的高分辨率图像。 IF的基础和超分辨率模型采用扩散模型,利用马尔可夫链步骤将随机噪声引入数据中,然后再反转过程,从噪声中生成新的数据样本。 IF在像素空间内操作,而不是依赖潜伏图像表征的潜伏扩散(如稳定扩散)。
OpenBMB

OpenBMB

OpenBMB全称为Open Lab for Big Model Base,旨在打造大规模预训练语言模型库与相关工具, 加速百亿级以上大模型的训练、微调与推理,降低大模型使用门槛,与国内外开发者共同努力形成大模型开源社区, 推动大模型生态发展,实现大模型的标准化、普及化和实用化,让大模型飞入千家万户。 OpenBMB开源社区由清华大学自然语言处理实验室和智源研究院语言大模型加速技术创新中心共同支持发起。 发起团队拥有深厚的自然语言处理和预训练模型研究基础,近年来围绕模型预训练、提示微调、模型压缩技术等方面在顶级国际会议上发表了数十篇高水平论文。
PaLM 2

PaLM 2

PaLM(Pathways Language Model) 是一种大型语言模型,即 LLM,类似于OpenAI 创建的 GPT 系列或Meta 的 LLaMA 系列模型。谷歌于 2022 年 4 月首次宣布推出 PaLM,超过了5400亿个训练参数。与其他 LLM 一样,PaLM 是一个灵活的系统,可以执行各种文本生成和编辑任务。例如,你可以将 PaLM 训练成像 ChatGPT 这样的对话式聊天机器人,或者你可以将它用于诸如总结文本甚至编写代码等任务。(这类似于谷歌今天也为其 Workspace 应用程序(如 Google Docs 和 Gmail)宣布的功能。) 在 2023 谷歌 I/O 大会上,谷歌 CEO 皮查伊宣布推出对标 GPT-4 的大模型 PaLM 2,并正式发布预览版本,改进了数学、代码、推理、多语言翻译和自然语言生成能力。 谷歌将为 PaLM 2 提供四种不同大小的版本,从最小到最大:Gecko、Otter、Bison 和 Unicorn。Gecko 非常轻巧,可以在移动设备上工作,并且速度足够快,即使在离线时也能在设备上运行出色的交互式应用程序。这种多功能性意味着可以对 PaLM 2 进行微调,以更多方式支持整个类别的产品,从而帮助更多人。 PaLM 2的特性 PaLM 2 是谷歌的下一代大语言模型,具有改进的多语言、推理和编码能力。 多语言性: PaLM 2 在多语言文本方面接受了更多的训练,涵盖 100 多种语言。这显著提高了它在多种语言中理解、生成和翻译细微差别文本(包括成语、诗歌和谜语)的能力,这是一个很难解决的问题。PaLM 2 还通过了“精通”级别的高级语言能力考试。 推理: PaLM 2 的广泛数据集包括科学论文和包含数学表达式的网页。因此,它展示了逻辑、常识推理和数学方面的改进能力。 编程: PaLM 2 在大量公开可用的源代码数据集上进行了预训练。这意味着它擅长 Python 和 JavaScript 等流行的编程语言,但也可以生成 Prolog、Fortran 和 Verilog 等语言的专用代码。
悟道

悟道

2021年6月,北京智源研究院(BAAI)推出了悟道1.0的后续版本悟道2.0,作为中国第一个超大规模智能模型系统。悟道是一个语言模型,旨在在人类层面的思维上超越 OpenAI 的 GPT-3 和谷歌的 LaMDA。经过4.9TB的图像和文本训练,并在9个基准上超过了最先进(SOTA)水平,悟道比任何同行都更接近于实现通用人工智能(AGI)和人类水平的思维。 悟道接受了4.9 TB高质量英文和中文图像和文本的训练: 1.2TB中文文本数据 2.5TB中文图形数据 1.2TB英文文本数据 悟道是基于开源的 MoE 系统 FastMoE 进行训练的。MoE是一种机器学习技术,其工作原理如下: 将预测建模任务划分为子任务,针对每个子任务训练专家(学习者)模型,开发门控模型,该门控模型基于要预测的输入来学习咨询哪个专家,并组合预测。FastMoE使悟道能够并行咨询不同的专家模型,并切换到预测结果最好的模型。例如,如果输入是英文文本,悟道将使用预测模型,该模型可以在英文文本中生成回应。

暂无评论

none
暂无评论...